
future lay with personal comput-
ers and with the applications they
could make available to every office
worker. The key application domain,
argued Lampson and others, would
be document preparation, and
the first step should be to develop
a powerful personal computer,
capable of displaying and manipu-
lating lengthy documents involving
proportionally spaced, variable-size
typefaces [4]. It was also clear, early
on, that there would be problems in
designing such a text editor, given
that the Alto had only 128K bytes
of main memory, and nearly half
of this was required to store a full-
page image for display on the bit-
mapped screen.

Fortunately, however, Lampson
and Charles Thacker had devised
a way to reduce the demands on
memory for displaying text [5].
There were many blank regions
in a page image, such as margins
and between-line gaps (Figure 1a).
But the same image could be con-
structed as a set of linked horizontal
bands of variable height and width,
as shown in Figure 1b. Each band
was allocated just enough memory
to accommodate the characters of
one text line; the spaces between the
bands were automatically displayed
in background color, consuming no
memory. The resulting screen image
was therefore indistinguishable from

adoption of this standard ensures
that users can move easily from one
editing program to another, without
needing to learn from scratch how
to use each one.

The origins of the text-editing
standard can be traced back to
pioneering work carried out in
the 1960s and 1970s, much of it
by research groups at Stanford
University, SRI, and Xerox PARC.
This work contributed to the devel-
opment of the Xerox Star worksta-
tion, which in 1981 became the
first available product to offer the
emerging standard editing interface.
Subsequently the standard was
adopted by major companies such
as Apple, Microsoft, and IBM. The
development of the standard editing
interface, whose story is told here,
has been one of the computer indus-
try’s major success stories.

xerox PARC and the Alto
The histories of Xerox PARC and
its Alto personal computer have
been thoroughly documented [1,2,3]
and need not be retold here in full.
Certain aspects of the Alto’s design
deserve mentioning, however,
because they had a strong influence
on the design of early text editors.
From the outset, PARC’s manage-
ment bought into the arguments of
its senior scientists, notably Butler
Lampson and Alan Kay, that Xerox’s

William Newman’s definitive and engag-
ing article reveals that something we
take for granted now was once one pos-
sibility of many. Recognizing this can
provide a deeper perspective on design
choices we face today. Newman is a
meticulous student of history who cre-
ated some of that history himself, work-
ing with other pioneers at the University
of Utah, Xerox PARC, and other
institutions. He contributed to several
groundbreaking systems and co-authored
the highly influential Principles of
Interactive Graphics, published in
1973.—Jonathan Grudin

With few exceptions, today’s
screen-based text editors adhere
to a common set of user-interface
conventions. For example, they
allow users to select a position where
typed text will be added, by either
pointing to the position and click-
ing, or using the arrow keys to move
the insertion point vertically or
horizontally. They allow the selec-
tion of a sequence of characters, by
clicking down and dragging across
the text, or a sequence of words by
double-clicking and dragging. Once
selected, text can be deleted by press-
ing the Delete key, or it can be moved
to a new position by clicking down
on it and dragging it. Conventions
like these underpin the standard text-
editing user interface found in today’s
computer applications. The wide

Design Case Study:
The Bravo Text Editor

William Newman
University College, London | wmn@pobox.com

in
te
ra
c
ti
o
n
s 

 
J
a
n
u
a
ry
 +
 F
e
b
ru
a
ry
 2
0
1
2

75

Timelines provides perspectives on HCI history, glancing back at a road  

that sometimes took unexpected branches and turns. History is not a dry list 

of events; it is about points of view and differing interpretations.

Jonathan Grudin, Editor

TImeLIneS Forum

a display of the same text as a single
bitmapped image, yet required only
a fraction of the memory.

Bravo
In 1973, PARC hired Charles
Simonyi, who had recently gained
his Ph.D. in computer science and
was deeply interested in software
development methods. On joining
PARC, Simonyi set about creating a
“software factory” in which to test
new approaches such as metapro-
gramming [6]. He pursued this goal
via a series of experimental design
projects, using the Alto as a test-
bed. An enthusiast for all forms of
manned flight, he drew names for
his projects from the pilots’ phonetic
alphabet: Alpha, Bravo, Charlie, etc.

Lampson was meanwhile realiz-
ing that building an Alto-based text
editor could be an interesting proj-
ect for Simonyi’s software factory,
particularly if it were to incorporate
a couple of ideas for improving
the editor’s performance. One of
these was a method for minimizing
rewrites of the document file, using
a piece table to keep track of changes

to the document (see sidebar). This
method is now used in several
leading word processors, includ-
ing Microsoft Word. Another idea
offered a way to speed up screen
updates by reusing parts of the
existing screen image.

Lampson proposed the editor
project to Simonyi and described his
ideas for implementing it. It became
the software factory’s second proj-
ect and therefore received the name
Bravo. During the summer of 1974,
Simonyi hired a programmer, Tom
Malloy, to help him with Bravo’s
implementation. Others at PARC lent
a hand as the program, and its user
interface, gradually took shape.

Bravo’s user interface. In designing
Bravo’s user interface, Lampson and
Simonyi took a relatively low-risk
approach, using existing techniques
from other editors in preference to
novel, untested ideas. There were,
unsurprisingly, many such ideas
circulating around PARC at the time.
Prominent among these were the
recommendations made by Larry
Tesler and Jeff Rulifson in their
OGDEN Report [7]; these included:

• A cursor should be displayed
showing where the next character
typed will appear.

• A command-last (postfix) lan-
guage is preferable to a command-
first (prefix) language.

• All keys on the terminal that
look like typewriter keys should do
what typewriter keys do.

• To move text, the source text
should be “cut” out of the document,
the destination signified, and the
material “pasted” in at that point.

Although Lampson and Simonyi
would have much preferred to
adhere to these recommendations,
they could not afford the extra
design and implementation effort.
They didn’t expect Bravo to be wide-
ly used and assumed the software
factory would soon be moving on to
its next project, Charlie. As it turned
out, neither of these expectations
panned out, but some invaluable
lessons were learned from building
Bravo’s user interface.

Selecting and typing text. Like
existing editors at the time, Bravo
followed the convention of allowing
the user to make a selection consist-
ing of one or more contiguous char-
acters, to which the user could apply
a chosen editing operation. Clicking
the left mouse button resulted in
selecting just one character—the
nearest character to the mouse
pointer. There were two methods
for extending this selection as far as
another character: by right-clicking
on this character, or by dragging
to it while keeping the left button
down. Both of these methods are
now universal standards [8]. In all
cases, when a new selection was
made, the previously selected text
was deselected.

Bravo used underlining to high-
light the currently selected char-
acters. While simple to implement,
this highlighting was sometimes
difficult for the user to find amid a

•  Figure 1. Memory 
required for text 
display on the alto: 
The amount used is 
represented by the 
colored areas.

 Introduction
	 	Describe	what	change	you	will	see	on	the	screen	if	you	do		

the	following:

	 (a)		With	the	mouse	cursor	positioned	somewhere	within	the	
text,	press	down	on	its	left	button	(‘left-down’),	and	then	
release.

(a) using a single, full-width bitmap

 Introduction
 Describe	what	change	you	will	see	on	the	screen	if	you	do	

the	following:

	 (a)		With	the	mouse	cursor	positioned	somewhere	within	
the	text,	press	down	on	its	left	button	(‘left-down’),		
and	then	release.

(b) using a display list containing a set of minimum-size bands, which in this example consumes 
only a third of the memory required for the full-width bitmap

TImeLIneSForum
in
te
ra
c
ti
o
n
s 

 
J
a
n
u
a
ry
 +
 F
e
b
ru
a
ry
 2
0
1
2

76

TImeLIneS Forum

page of text, particularly when just
a single character had been selected.
If the text had already been under-
lined by the user, it now acquired
two underlines (Figure 2). Simonyi
had experimented with showing the
selection by inverting the text to
white on a black background, simi-
lar to today’s standard. On the Alto,
however, this took noticeably longer

to appear than underlining, and it
also made the text less legible. Later,
when Xerox developed a higher-res-
olution screen for the Star worksta-
tion, the now-standard practice of
inverting the selected text took hold.

As now, the user’s purpose in
making a selection was typically to
indicate a position for entering text.
However, since the selection always

included at least one character, the
user needed the choice of whether
to insert text to the left of the selec-
tion, or append text to the right of it.
Bravo therefore provided two dif-
ferent one-letter commands for text
entry: I to insert, and A to append.
An insertion point, in the shape of an
inverted V, then appeared before or
after the selection. The user could
type new text and then press the
ESC key to complete the operation.

Type-in mode and command
mode. The decision to use keyboard
characters for issuing commands
required the Bravo user interface to
have two basic modes. The program
always started in command mode,
in which certain alphabetic keys
were interpreted as commands. If
the I or A commands were given,
Bravo switched into type-in mode
during which alphabetic keys gen-
erated text, and the concluding
ESC switched the program back to
command mode. Other commands,
some of which caused a switch to
type-in mode, included:

D delete selection
E select everything
F find text
G get file
P put file
Q quit Bravo
S substitute text for text
U undo
For the user of Bravo, with its two

modes, there was always the risk
of starting to enter text when the
program was in command mode,
causing the entered characters to
be treated as commands. The out-
come could be quite unhelpful. For
example, typing the word “edit”
when in command mode would
select everything, i.e., the entire
text, then delete the selection, leav-
ing the document file empty, then
start to insert text, and finally add
the letter “t” to a now empty docu-
ment. Although Bravo provided an

BrAvO’S PIECE TABlE
The piece table, invented by Butler lampson, solved the problem of
achieving a rapid response to editing large text files on the Alto. Most
documents were too long to fit in the Alto’s main memory and therefore
had to be stored as disk files. Each change to the displayed text could
necessitate a lengthy file update, during which the user would be
blocked from editing.

lampson realized it wasn’t necessary to update the document file after
each deletion. Instead the file could be treated as a set of pieces, and a
piece table could maintain a record of which pieces had been deleted
and which had not. Bravo could then show just the undeleted pieces of
text and could ignore the deleted pieces (shaded gray in the diagram).

When a document file was first created by Bravo, therefore, it was
treated as a single piece. Whenever the user made an insertion or
deletion, the affected piece was split into two pieces at the point of
change, one piece before the deletion or insertion, and the other
piece following it. If text was inserted, it was appended to a temporary
“scratch file” (shown with a dashed boundary in the figure), and a record
of it was made in the piece table. As a result, the document file could be
left unchanged until editing was complete, and could then be updated
by writing out the contents of all of the pieces in the piece table.

•  Using a piece table to manage edits to a document file.

piece table
before edits:
 000:169

(start:length)

piece table
after edits:
 000:35

 000:27

 035:6

 041:69

 118:29

document file: document file:

scratch file:

It	was	possible		
to	swap	the	
colours.	This	
reversal	of		
colours	could	be	
applied	to		
individual		
characters	as	a	
means	of		
highlighting		
certain	items	of	
data	(see	Figure		
2).

so	as	to	show	
text	in	black

It	was	possible	
to	swap	the	
colours
.	This
reversal	of	
colours
could	be	applied	
to	individual	
characters	as	a	
means	of	high-	
lighting

certain
items	of	data	
(see	Figure	2).

in
te
ra
c
ti
o
n
s 

 
J
a
n
u
a
ry
 +
 F
e
b
ru
a
ry
 2
0
1
2

78

TImeLIneSForum

undo command, it applied only to
the most recent command, so in
this instance only the “insert t”
command could be reversed, and all
the text was now lost [9].

Many of Bravo’s commands
caused a mode change because they
required input from the user. For
example, the selected text could
be replaced by first typing R and
then selecting the text that should
replace it. The look command, for
formatting the currently selected
text, required a one-letter format-
ing parameter to follow it, e.g., B for
boldface or I for italic.

Scrolling the text. By the mid-
1970s, scrolling was already sup-
ported by most text editors, usually
by means of single-keystroke com-
mands that, for example, stepped
the text up or down by one line [10]
or by a half-screen [11]. With a long
document, several such steps would
often be needed to scroll the text to
a precise position.

Simonyi and Lampson real-
ized these multiple steps could be
reduced to a single step by using
the mouse to control what was
made visible. Pointing and clicking
the mouse within the actual text
was to be avoided, because this
would be interpreted as selecting a
word or character. To scroll, there-
fore, the user would have to point
in a region where there was no text,
and where vertical movement could
be specified. The two options avail-
able were therefore to use either the
left or the right margins.

This led to the concept of the
scroll bar, as Lampson and Simonyi
called it. Bravo’s display provided
no indications of where its scroll
bars were or that they even existed.
Adding the necessary graphics to
each band of the display would
have consumed considerably more
display memory, so Simonyi opted
for an invisible scroll bar, in the left

margin, detectable only by changes
in the shape of the mouse cursor.
When it was moved into the scroll
bar, the cursor changed to a double
arrow (Figure 3b), and when it was
moved out it returned to its nor-
mal shape (Figure 3a). As shown in
Figures 3c and 3d, if the left or right
mouse button was pressed while
the cursor was within the scroll bar,
its shape changed to a single up- or
down-arrow. When the button was
released, the adjacent line moved up
to the top of the screen (left button),
or the top line moved down to the
cursor position (right button). This
had the advantage that a scroll-
ing operation could be reversed by
clicking the other button.

Pressing the middle button on
the mouse changed the cursor
to the thumbing symbol, a striped
right-pointing arrow (Figure 3e). On
the button’s release, the document
would scroll to a position in the doc-
ument proportional to the cursor’s
position in the scroll bar. Today’s
scroll bars in Windows provide the
same thumbing effect when the
elevator is moved.

The line bar. Simonyi also pro-
vided a second invisible bar, the line
bar, to the right of the scroll bar;
when the cursor was within this
bar, it changed to point toward the

text (see Figure 3f). By left-clicking
while pointing within the line bar,
the user could select the whole of
the adjacent line, and this selection
could be extended by right-clicking
opposite to another line. Clicking
the middle button selected the
whole paragraph. A similar line bar,
also invisible, is provided in many of
today’s word processors.

Bravo users generally had no dif-
ficulty positioning the cursor in the
correct vertical slice of the screen.
What they lacked was context—
where were they in the document as
a whole? In today’s editors, a visible
scroll bar offers that context.

Bravo’s deployment. The develop-
ment of Bravo was followed with
great interest by PARC’s research-
ers. At that time they were still
using relatively slow and awkward
systems for creating documents,
including document compilers such
as PUB [12] and line editors like QED
[13]. When released late in 1974,
Bravo transformed out of all recog-
nition the task of preparing a docu-
ment. Within a few months it was
in use not only by PARC’s computer
scientists, but also by other Xerox
researchers and by a growing num-
ber of administrative staff.

It was some years before Bravo
was made public. In 1975 Xerox

•  Figure 2. Underlining 
and selection in 
bravo: Here, under-
lining has been 
applied to the word 
“two,” and the words 
“two underlines” 
have been selected.

selected	 just	 a	 single	 character,	 but	 it	 worked	 well	 otherwise.	
When	underlined	 text	was	selected,	 it	acquired	 two	underlines.

In 1973
Simonyi
development

(a)  
the normal 
pointer when 
within text

(b) 
double- 

arrow shape 
when in the 
scroll bar 

(c)  
scroll-up 
shape when 
pressing the 
left mouse 
button in the 
scroll bar

(d) 
scroll-down 
shape when 
pressing the 
right mouse 
button in the 
scroll bar

(e)  
thumbing 
shape when 
the middle 
button was 
pressed 

(f)  
cursor 
shape  

when in the 
line bar, 
selecting a 

line •  Figure 3. bravo’s 
cursor shapes.

in
te
ra
c
ti
o
n
s 

 
J
a
n
u
a
ry
 +
 F
e
b
ru
a
ry
 2
0
1
2

79

TImeLIneS Forum

began the development of the Star
product, which was to incorporate
many features of Bravo when it final-
ly launched in 1981. Prior to that,
Bravo, although kept largely under
wraps, was included in the dona-
tion by Xerox of 50 Altos to select
American universities. Meanwhile it
was shown to a number of potential
customers, including a congressional
committee exploring new technolo-
gies, who visited PARC in 1975.

The congressional visit led to
a purchase of Alto systems and
laser printers in 1978 for use by the
U.S. Congress, the White House,
and the U.S. vice president’s office
[14]. These prestigious organiza-
tions were far from ideal as test
sites, for they required extensive
support—thousands of miles from
PARC—and they tended to use the
Alto in bizarre ways. For example,
President Jimmy Carter’s staff con-
tinued to have their typing pool pre-
pare drafts of documents; Bravo was
used only to retype and print the
final text once it had been approved.
By 1980 the White House had almost
given up using the Alto system, and
in 1981 they were about to get rid of
it. It was put back into service, how-
ever, because it alone could print
Ronald Reagan’s speeches in a large
typeface that he could read in public
without wearing spectacles.

Conclusion
PARC was a powerhouse of innova-
tion during the 1970s, and Bravo
was one of its most influential pro-
grams. Among its many firsts:

• Bravo was the first general-
purpose editor to support on-screen,
multifont, variable-size text editing.
Its designers foresaw that this style
of editing, and the personal comput-
ers to support it, would render all
other styles obsolete.

• Bravo was the first WYSIWYG
[15] editor, and indeed it was

responsible for introducing this
term to interface design. Previous
editors rarely made any attempt
to match the display to the print-
ed page; this meant that users
could not check whether they
had formatted the document cor-
rectly, except by printing it out.

• Bravo was the first text editor
whose speed of response to com-
mands was largely unaffected by
the size of the document. This was
achieved through the use of internal
structures—principally the piece
table—that to this day remain an
essential part of word processors.

Bravo’s user interface was not
without its faults, including modes
that could result in user errors.
These were rectified, first in Larry
Tesler’s Gypsy editor, which used
much of Bravo’s internal design [16],
and later in a Bravo redesign led
by Simonyi, resulting in a system
called BravoX that was included in
the congressional purchase. Efforts
by Xerox to commercialize BravoX
came to nothing, however, and in
1981 Simonyi joined Microsoft, then
a small company producing operat-
ing systems. He led the develop-
ment of Word, basing the design
heavily on BravoX, and the product
was released in October 1983.

Acknowledgements
I am deeply grateful to Bill Moggridge,
whose book Designing Interactions
revealed to me the insights to be gained
from interviewing designers, and led
eventually to my embarking on this
investigation. I am also most grateful
to Butler Lampson and Charles Simonyi
for their willingness to be interviewed at
length about Bravo’s history, and then to
read the drafts of this case study and pro-
vide suggestions and corrections. Without
their help, this study could not have been
written. I would like also to thank Xerox
PARC’s Sally Peters for her tireless help in
locating essential reference documents.

EndnotEs:

1. brand, S. Two Cybernetic Frontiers. random 
House, new york, 1974.

2. Thacker, C.P., McCreight, E.M., Lampson, b.W., 
Sproull, r.F., and boggs, D.r. alto: a personal 
computer. In Computer Structures: Principles and
Examples, second edition.

3. Hiltzik, M.a. Dealers of Lightning: Xerox PARC and
the Dawn of the Computer Age. HarperCollins, new 
york, 1999.

4. Lampson, b.W. Why alto? Xerox Inter-Office 
Memorandum, 1972; http://www.digibarn.com/ 
friends/butler-lampson/

5. Fraser, C.W. and Krishnamurthy, b. Live text. 
Software: Practice and Experience 20, 8 (1990), 
851-858.

6. Simonyi, C. Meta-programming: a software 
production model. Xerox ParC Technical report 
CSL-76-7, 1976.

7. Tesler, L.G. and rulifson, J.F. OGDEN: An Overly
General Display Editor for Non-Programmers. Xerox 
ParC, Palo alto, 1973.

8. The use of double clicking for word selection was 
added to bravo later, after its invention by Tim Mott. 
See Moggridge, W. Designing Interactions. MIT 
Press, Cambridge, Ma, 2007, 69.

9. a more forgiving Undo facility was later provided. 
It reloaded the file and replayed all of the user’s 
subsequent edits.

10. bolski, M.I. The vi User’s Handbook. aT&T bell 
Laboratories, 1984.

11. Wiseman, n.E. a scope text editor for the 
PDP7/340. Paper presented at the DECUS 
European Spring Seminar, 1966.

12. Tesler, L.G. PUb: The document compiler. 
Stanford aI Laboratory Operating note 70, 1972; 
http://www.nomodes.com/pub_manual.html. 

13. Deutsch, L.P. and Lampson, b.W. an online edi-
tor. Comm. ACM 10, 12 (1967), 793-799.

14. Smith, D.K. and alexander, r.C. Fumbling the
Future. Morrow, new york, 1988.

15. “What you see is what you get,” a catch phrase 
made popular by Flip Wilson, who played the 
character Geraldine on a 1960s american TV show, 
Rowan and Martin’s Laugh-In. Jim Morris adopted 
the phrase and the acronym to describe editors that 
presented an accurate display (“what you see”) of 
the document as printed (“what you get”), and it 
was soon in widespread use around ParC.

16. Tesler, L.G. and Mott, T. GYPSY: The Ginn
Typescript System. Xerox ParC, Palo alto, 1975.

About thE Author
William newman gained his Ph.D. 
in computer science at Imperial 
College, London. With robert 
Sproull he wrote the seminal 1973 
textbook, Principles of Interactive
Computer Graphics. During the 

1970s and 1990s he worked at Xerox ParC and 
then at Xerox research Centre Europe. He is cur-
rently a visiting professor at University College, 
London, engaged in documenting the design histo-
ry of today’s interactive desktop.

DOI: 10.1145/2065327.2065342
© 2012 aCM 1072-5220/12/01 $10.00in

te
ra
c
ti
o
n
s 

 
J
a
n
u
a
ry
 +
 F
e
b
ru
a
ry
 2
0
1
2

80

TImeLIneSForum

